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the affinity matrix computed from the data satisfies some of
these properties. For example, the problem of subspace clus-
tering considers clustering data which is (approximately)
supported on a union of low-dimensional linear subspaces,
where each linear subspace defines a cluster. In this case,
an affinity matrix is typically computed by expressing each
data point as a linear combination of all other data points
and enforcing sparse or low-rank properties on the matrix of
coefficients, which is then used to define the affinity (Vidal
et al., 2016). While several sufficient conditions on the data
under which no false connections exist between points from
different subspaces (Property 2) have been derived (Vidal
et al., 2016), such conditions do not guarantee the connec-
tivity of the affinity. This issue is discussed in (You et al.,
2016), where the trade off between sparsity and connec-
tivity is studied experimentally. Moreover, even when the
conditions on the data that guarantee no false connections
of the affinity are violated, suitable normalization can still
lead to an ideal affinity. Indeed, a wide number of ad-hoc
approaches have been proposed to normalize an affinity ma-
trix beyond the standard normalization inherent to NCut
or RatioCuts (Liu et al., 2013; Ji et al., 2014; Elhamifar
& Vidal, 2013), and it has even been argued that much of
the benefit claimed by many proposed clustering algorithms
can actually be attributed largely to ad-hoc affinity normal-
ization (Haeffele et al., 2020). Seeking a more principled
approach to affinity normalization, Lim et al. (2020) follow
the interpretation of Zass & Shashua (2006) and show em-
pirically that normalizing the affinity matrix by projecting
it to the space of doubly stochastic matrix under the ℓ2 dis-
tance achieves state-of-the-art performance across a wide
variety of common clustering datasets. This is illustrated in
Figure 1, which shows that a very noisy affinity matrix with
numerous false connections between the 3 underlying clus-
ters becomes nearly ideal following projection to a doubly
stochastic matrix under the ℓ2 metric.

Contributions. In this work, we give a rigorous theoretical
analysis of doubly stochastic projection of affinity matrices
with the ℓ2 metric (Problem (2)) to help explain its empirical
success. First, we prove a necessary and sufficient condi-
tion on the input affinity for the projected affinity to have
no false connections (Theorem 2.2) even when the origi-
nal affinity matrix might contain a large number of false
connections. While the optimality condition couples the
primal and dual variables from different clusters together
which could complicate the analysis, the condition we pro-
vide relates quantities from decoupled sub-problems, each
of which concerns the doubly stochastic projection of the
entries within only one cluster. Further, under some models
of the input affinity, this allows us to characterize conditions
under which an input affinity with false connections will
have no false connections and be well-connected within
each cluster following doubly stochastic projection (Corol-

laries 2.3 and 2.4). Then, we specialize to the subspace
clustering data model, where the data is assumed to be gen-
erated from a union of linear subspaces, each defining a
cluster. For this setting, we develop a continuous problem
(21), i.e., in the limit when the number of data points be-
comes very large and uniformly distributed, followed by a
continuous counterpart of the decoupling theorem (Theo-
rem 3.2). This allows for an analysis of false connections
(Theorem 3.5) and the connectivity of the projected affini-
ties (Theorem 3.8), which depends solely on the subspace
dimensions, percentage of points within each subspace, and
the angles between the subspaces. In particular, we show
that there will be no false connections in the normalized
affinity matrix if the subspaces are sufficiently separated
in angle, or have sufficiently low dimensions, or are well
balanced in terms of mixture weights. Finally, we conduct a
variety of experiments that illustrate our theoretical findings
and demonstrate the utility of doubly stochastic projection
in different settings.

2. Doubly Stochastic Clustering
2.1. Problem Formulation

To define the doubly stochastic clustering problem that we
study, consider n data points drawn from k underlying clus-
ters, where cluster l contains nl points and n = n1+· · ·+nk.
Define the mixture weight of each cluster l as πl =

nl

n .

Given an affinity matrix K ∈ Rn×n, where Kij = Kji ≥
0 denotes the similarity between data points i and j, the
method of doubly stochastic clustering consists of two steps.
First, one projects a scaled version of the given K onto the
set of doubly stochastic matrices4

An := {A ∈ Rn×n : Aij ≥ 0,∀i, j; A1 = A⊤1 = n1}

under some notion of distance d

A∗ = argmin
A∈An

d(A,
1

η
K), (1)

where 1 is the vector of all ones, and η > 0 is a scaling
parameter. After that, one runs spectral clustering on the
obtained A∗ to produce the final clustering. One immediate
merit of projecting onto An is that one does not need to
choose between Ratio Cut and NCut, since both are equiva-
lent5 on a doubly stochastic affinity A∗.

Choice of the Distance d. As briefly mentioned in §1, classi-
cal spectral clustering methods correspond to projecting the
given affinity K onto the set of doubly stochastic matrices
An under different distances: Ratio Cut is closely related to

4The usual definition of a doubly stochastic matrix requires the
row and column sums to be 1. Here, without loss of generality, we
define the sums to be n to simplify notation in our later analysis.

5That is, the two cuts yield the same Laplacian I − 1
n
A∗.
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projection under the ℓ1 metric, and NCut to projection under
the KL divergence (Zass & Shashua, 2006). One interesting
and perhaps natural alternative is to use the ℓ2 norm as a
distance. Remarkably, doubly stochastic projection under
the ℓ2 metric yields state-of-the-art performance in subspace
clustering on a variety of realistic datasets (Lim et al., 2020).
This is largely due to the empirical observation that such a
projection strikes a balance between removing false connec-
tions (Property 2) and maintaining connectivity (Property
1), via a parameter η that controls the sparsity of the output
affinity A∗. This control of sparsity is, however, not present
when projecting with the ℓ1 norm6 and also absent when
projecting with the KL divergence7.

Importance of Connectivity. Note that the absence of false
connections is insufficient to guarantee correct clustering.
This is because the connections within one cluster may not
form a connected subgraph, resulting in the cluster being
over-segmented. Further, the stability of spectral clustering
(§1) against perturbations on the affinity is associated with
whether each cluster is sufficiently well connected (see §7.1
of Von Luxburg, 2007). Hence, the stability of the final
clustering benefits from the affinity being as connected as
possible within each cluster.

Based on the discussion above, this paper focuses on doubly
stochastic projection under the ℓ2 metric, which we refer to
as DS-D(K, η):

A∗ = argmin
A∈An

∥∥∥∥A− 1

η
K

∥∥∥∥2
F

. (2)

2.2. Optimality Analysis

We first study the optimality conditions of DS-D(K, η).
Since the optimization problem is strongly convex, a stan-
dard primal-dual analysis gives the following necessary and
sufficient conditions for global optimality.

Proposition 2.1. The optimality conditons to DS-D(K, η)
are

A∗ =
1

η
[K −α∗1⊤ − 1α∗⊤]+, (3)

1

η
[K −α∗1⊤ − 1α∗⊤]∗+1 = n1, (4)

where A∗ ∈ Rn×n is the unique primal solution, α∗ ∈ Rn

is a dual solution which satisfies (4), and [·]+ = max(·, 0)
is applied entrywise.

Note that from the form of the primal solution for A∗, the
no false connections property is equivalent to saying that for

6Since the output affinity A∗ differs from the input K only
by their diagonal entries as per Proposition 1 of (Zass & Shashua,
2006), the sparsity is almost unchanged.

7See Proposition 2 of (Zass & Shashua, 2006).

all i, j coming from different clusters, Kij ≤ α∗
i + α∗

j . As
such, we would like to find lower bounds on entries of α∗

to give sufficient conditions on A under which A∗ enjoys
the no-false-connection property. Nevertheless, it is non-
trivial to directly bound α∗ in a meaningful way due to the
coupling the entries of α∗ in (4). However, as we show in
our next result, the no-false-connection property is satisfied
if and only if the DS-D(K, η) problem can be decoupled
into a sequence of doubly stochastic projection problems
along the inter-cluster portions of the affinity matrix.

Without loss of generality, assume that the rows/columns of
K are sorted according to their cluster membership, i.e.

K =


D(1) ∗ · · · ∗
∗ D(2) · · · ∗
...

...
. . .

...
∗ ∗ · · · D(k)

 , (5)

so that the l-th diagonal block of K, D(l) ∈ Rnl×nl , con-
tains the intra cluster affinities for cluster l. Further let i ∼ j
and i ̸∼ j notate that points i and j are in the same or differ-
ent clusters, respectively. With this notation we then have
the following result.

Theorem 2.2. The following statements are equivalent:

1. For each cluster l, there exist α(l) ∈ Rnl a dual solu-
tion of DS-D(D(l), η

πl
), such that α◦

i + α◦
j ≥ Kij for

all i ̸∼ j, where α◦ := [α(1)⊤, . . . ,α(k)⊤]⊤ ∈ Rn.

2. A◦ := diag( 1
π1
A(1), . . . , 1

πk
A(k)) is the unique pri-

mal solution of DS-D(K, η), where for each cluster l,
A(l) is the unique primal solution of DS-D(D(l), η

πl
).

3. The unique primal solution of DS-D(K, η) has no false
connections.

A proof is given in the Appendix. The above theorem gives
necessary and sufficient conditions for the projected doubly
stochastic affinity to have no false connections. Notably,
in words this theorem implies that if one solves a DS-D
problem for each within-cluster block D(l) of K, then the
solution of the DS-D for the entire K matrix will have no
false connections if and only if the solution can be formed
by concatenating all of the within-cluster solutions into
a block diagonal matrix. From this result, we can give
several immediate corollaries for simple properties of the
affinity matrix that are sufficient to guarantee the no-false-
connections property.

Corollary 2.3 (Constant Intra-cluster Connections). Sup-
pose K is such that for each cluster l, all intra-cluster
connections have values µl, i.e., D(l) = µl1nl

1⊤
nl

. Then,
the unique primal optimal for DS-D(K, η) has no false
connections and is fully-connected within each cluster, as
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long as any connections in K between clusters p ̸= q have
values at most 1

2 (µp + µq − η
πp

− η
πq
).

Proof. Suppose the upper bound on connections between
clusters in K holds. We first show that statement 1. in The-
orem 2.2 holds. Consider the problem DS-D(D(l), η

πl
). By

Proposition 2.1, it can be seen that α(l) := 1
2

(
µl − η

πl

)
1nl

and A(l) := πl

η [D(l) −α(l)1⊤
nl

− 1nl
α(l)⊤] is respectively

a dual optimal and the primal optimal for this problem. In-
deed, a row sum of A(l) takes the form

πl

η

nl∑
j=1

[
µl − µl +

η

πl

]
+

=
πl

η

nl∑
j=1

η

πl
= nl. (6)

Now, letting α◦ = [α(1)⊤, . . . ,α(k)⊤]⊤ as in Theorem 2.2,
note that if point i is in cluster p and point j is in cluster
q ̸= p, then α◦

i + α◦
j = 1

2

(
µp + µq − η

πp
− η

πq

)
. Since

we assume that 1
2 (µp + µq − η

πp
− η

πq
) ≥ Kij , statement

1. in Theorem 2.2 holds. It follows from statement 2. that
the primal optimal A◦ for DS-D(K, η) is fully connected
within cluster l, where each connection is of strength 1

πl
;

from statement 3. that A◦ has no false connections.

Corollary 2.4 (Constant Sum of Top Intra-cluster Connec-
tions). Suppose K is such that for each cluster l, there
exists an integer σl, such that the σl-nearest-neighbour8

graph of D(l), denoted as S(l), satisfy the following

1. 1
σl

∑
j∈S

(l)
1

D
(l)
1j = · · · = 1

σl

∑
j∈S

(l)
nl

D
(l)
nlj

:= el,

2. ∀(i, j) ∈ S(l), D
(l)
ij ≥ el − nη

σl
,

3. ∀(i, j) /∈ S(l), D
(l)
ij ≤ el − nη

σl
.

Then, the unique primal optimal for DS-D(K, η) has no
false connections and is connected within cluster l along
the σl-nearest-neighbour graph, as long as any connections
in K between clusters p ̸= q have values at most 1

2 (ep +
eq − nη

σp
− nη

σq
).

Intuitively, the above corollaries suggest that as long as any
two clusters have false connections smaller than the average
of the largest intra-cluster connections, minus some gap
that is proportional to the η parameter, the optimal doubly
stochastic projection will have no false connections and is
well connected within each cluster.

The next corollary shows that the doubly stochastic pro-
jection given by the solution of DS-D(K, η) is invariant to
perturbations by low rank matrices of the form v1⊤ + 1v⊤

8Namely, S(l) contains indices of the largest σl entries of each
row or column of D(l) (recall K is symmetric).

for any v ∈ Rn, such as an elementwise perturbation by a
constant c ∈ R. Thus, the doubly stochastic projection can
remove certain additive corruptions on the input affinity K.
Corollary 2.5. For a vector v ∈ Rn, the primal optimal to
DS-D(K, η) is the same as that of DS-D(K+1v⊤+v1⊤, η).
In particular, adding a constant c ∈ R to each entry of K
does not change the solution DS-D(K + c11⊤).

Proof. For any v ∈ Rn and A ∈ An, note that

⟨1v⊤ + v1⊤,A⟩ =
∑
i

∑
j

viAij +
∑
i

∑
j

vjAij (7)

=
∑
i

vi
∑
j

Aij +
∑
j

vj
∑
i

Aij (8)

=
∑
i

vin+
∑
j

vjn = 2n
∑
j

vj , (9)

which is a constant independent of A. Thus, the minimizer
of the objective DS-D(K) is the same as the minimizer of
the objective DS-D(K + 1v⊤ + v1⊤). The second part of
the lemma follows from taking v = c

21.

3. Doubly Stochastic Subspace Clustering
Given our above analysis for the general DS-D problem, we
now consider a specific data model to provide additional
analysis. Specifically, we will analyze the subspace cluster-
ing model, where the data are assumed to lie on a union of
(low-dimensional) linear subspaces and the goal is to clus-
ter data points based on which linear subspace they lie in.
This assumption is a reasonable model for many real-world
data problems (Vidal, 2011), possibly after a preprocess-
ing of the data such as the scattering transform (Bruna &
Mallat, 2013). Past work has theoretically studied this data
model in various settings (Soltanolkotabi & Candés, 2012;
Soltanolkotabi et al., 2014; You & Vidal, 2015), and re-
cent empirical work that uses doubly stochastic projection
has achieved state-of-the-art empirical results for subspace
clustering problems (Lim et al., 2020).

Specifically, consider k subspaces {Sl}kl=1 of RD, each of
dimension dimSl := dl < D. Suppose each Sl contains
nl points X(l) = [x

(l)
1 , . . . ,x

(l)
nl ] lying on the unit sphere

SD−1. Let Φ =
⋃k

l=1 Sl denote the union of the subspaces,
and X = [X(1), . . . ,X(k)] ∈ RD×n the collection of data.
Given X , one performs subspace clustering using doubly
stochastic projection by first computing an affinity matrix
K ∈ Rn×n from X via kernel functions9 or existing sub-
space clustering methods and the solving the DS-D(K, η)
problem. Then, one can perform spectral clustering on the
solution to DS-D(K, η) and obtain a final clustering.

9That is, for some positive definite function κ : RD×RD → R,
take Kij = κ(xi,xj) for every i, j. Examples for κ include the
Euclidean inner product and radial basis function kernel.




